
This article was downloaded by:

On: 26 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597286>

The Synthesis of Bicyclic N⁴-Amino-2'-deoxycytidine Derivatives

D. Loakes^a; D. M. Brown^a

^a Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom

To cite this Article Loakes, D. and Brown, D. M. (1995) 'The Synthesis of Bicyclic N⁴-Amino-2'-deoxycytidine Derivatives', *Nucleosides, Nucleotides and Nucleic Acids*, 14: 3, 291 – 293

To link to this Article: DOI: 10.1080/15257779508012364

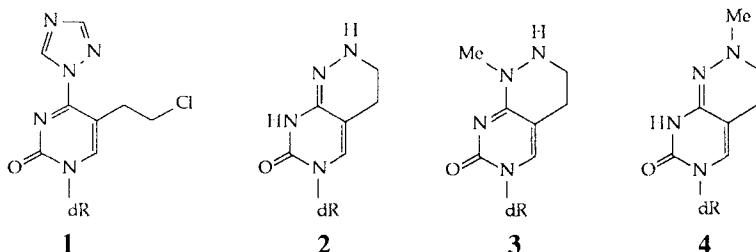
URL: <http://dx.doi.org/10.1080/15257779508012364>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

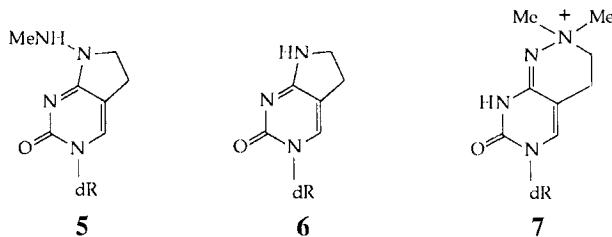
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.


THE SYNTHESIS OF BICYCLIC N⁴-AMINO-2'-DEOXYCYTIDINE DERIVATIVES.

D. Loakes and D.M. Brown*

Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge,
United Kingdom

ABSTRACT. A number of bicyclic N⁴-amino-2'-deoxycytidine derivatives have been prepared. Their ambivalent hydrogen bonding potential makes them of interest for mutagenesis studies, and for incorporation into oligonucleotides for probes and primers.


As part of our work to develop bases capable of ambivalent hydrogen bonding, we have previously developed two bicyclic N⁴-oxy-2'-deoxycytidine derivatives^{1,2}. One of these¹ has found use as a degenerate pyrimidine base for probes and primers, though it has been shown to behave more like thymine³. These compounds are also of interest for mutagenesis studies due to their ambivalent hydrogen bonding potential. In an attempt to prepare pyrimidine nucleosides which have tautomeric constants closer to unity we have turned our attention to N⁴-amino-2'-deoxycytidine derivatives⁴.

dR = 3,5-di-O-acetyl-2-deoxyribofuranosyl.

Treatment of the triazolo derivative¹ **1** with anhydrous hydrazine led to an immediate reaction to give the expected product **2**. This compound, however, was found to be unstable, and therefore unsuitable for incorporation into oligomers, presumably undergoing oxidative cleavage of the newly formed ring. It was therefore decided to prepare a derivative of **2** with alkyl protection, such as **4**, in the hope that this might stabilise the product towards oxidation. Treatment of **1** with 1-methylhydrazine, however, led to **3**, the structure for which was confirmed by NOE measurements.

It has been shown⁵ that the methylamino group of methylhydrazine is the more nucleophilic, and so the formation of **3** is to be expected. However, the bicyclic product **3** is a fixed tautomer, and so it was decided to prepare a protected methylhydrazine in order to prepare **4**. Thus treatment of the triazolo derivative **1** with N¹-benzyloxycarbonyl protected methylhydrazine⁶ led in a slower reaction to displacement of the triazolo group by the amino group as expected. When the benzyloxycarbonyl group was removed (Pd/C, H₂) the product obtained was not the expected bicyclic product **4**, but a 5-membered analogue **5**. This product must arise by displacement of the halogen by the N⁴-amino nitrogen, and not the terminal one. The structure of **5** was confirmed from its nmr spectrum which showed the N-methyl group as a doublet (δ 2.67 ppm, J =5.5 Hz), which became a singlet after a D₂O wash.

The reduction was also carried out under acidic conditions (HOAc or 0.1M HCl), conditions that we hoped would not lead to ring closure after removal of the protecting group, and that the cyclisation might then be controlled to give the desired product. But it was found that cyclisation had occurred, and that the exocyclic amino group had additionally been reductively cleaved to give **6**. However, treatment of the triazolo derivative **1** with ammonia in dioxan did not give the product **6** but the un-cyclised 5-(2-chloroethyl)-2'-deoxycytidine. This is somewhat surprising in view of the fact that cyclisation did occur during the reduction to give the 5-membered analogue **5**.

In an attempt to further clarify this unexpected ring closure we carried out the displacement of the triazole using N,N-dimethylhydrazine. We expected to synthesise from this route the dimethylamino analogue of **5**. This reaction, however, gave rise to two new products; the minor product was shown to be the product arising from displacement of the triazole by the hydrazine. The second, major product was a charged product which proved difficult to purify but for which we have assigned the structure **7**.

REFERENCES

1. D.M. Brown and P. Kong Thoo Lin, Nucleic Acids Res., (1989), **17**, 10373-83.
2. D. Loakes and D.M. Brown, Nucleosides and Nucleotides, (1994), **13**, 679-706.

3. H. Kamiya, N. Murata-Kamiya, P.K.T. Lin, D.M. Brown and E. Ohtsuka, Nucleosides and Nucleotides, (1994), **13**, 1483-1492.
4. A. Nomura, K. Negishi and H. Hayatsu, Nucleic Acids Res., (1985), **13**, 8893-8899.
5. D.E. Butler, S.M. Alexander, J.W. Mclean and L.B. Strand, J. Med. Chem., (1971), 1052-1054.
6. A.S. Dutta and J.S. Morley, J.Chem.Soc. Perkin 1, (1975), 1712-1719.